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Abstract. We investigate the b-u skewed parton distributions (SPDs) for B → π transitions and deter-
mine the contributions from several sources (overlaps of soft light-cone wave functions, quark-antiquark
annihilations and meson resonances). The B → π transition form factors, which are relevant in exclusive
semi-leptonic and non-leptonic B-decays, are obtained by integrating the b-u SPDs over the momentum
fraction x. A phenomenological determination of the relevant parameters allows us to predict the form
factors and to obtain the branching ratios for semi-leptonic B → π decays.

1 Introduction

A good theoretical understanding of heavy-to-light meson
form factors, which encode the confinement of the quarks
in the hadronic bound states, are of utmost interest. Ac-
curate predictions of the form factors would permit the
determination of the less well-known Cabbibo-Kobayashi-
Maskawa (CKM) matrix elements from experimental rates
of exclusive heavy meson decays. For instance, in the case
of the semi-leptonic B → π transitions, on which we focus
our interest in this article, the relevant entry in the CKM
matrix is |Vub|. Its present value is 0.0035 with an un-
certainty of about 0.001 [1,2]. The form factors for tran-
sitions from the B meson to light mesons also form an
important ingredient of the calculation of exclusive non-
leptonic B decays, e.g. for B → ππ. Thus, not surpris-
ingly, the heavy-to-light form factors attracted the atten-
tion of theoreticians, and many articles have been devoted
to their investigation. The theoretical approaches utilised
in these articles range from the quark model [3], overlaps
of light-cone wave functions [4,5], perturbative QCD [6,
7], the heavy quark symmetries [8,9] to QCD sum rules
[10,11], to name a few.

In several of these approaches there are two distinct
and prominent dynamical mechanisms: The Bπ resonan-
ces, which control the form factors at small recoil, and
the overlap of meson wave functions which dominates at
large recoil. Other mechanisms, like the perturbative one,
provide only small corrections. The crucial problem arises
then, how to match these two contributions at intermedi-
ate recoil. In this article we are proposing a new approach
which is based on the concept of generalised or – as fre-
quently termed – skewed parton distributions which has
recently been invented in the context of deeply virtual
Compton scattering [12]. The SPDs are defined as non-
forward matrix elements of non-local currents. They are
hybrid objects in this respect which share the properties
of ordinary parton distributions and form factors. We are

going to introduce b-u SPDs as a parametrisation of the
soft B → π matrix element. The chief advantage of the
SPDs for B → π transitions is that they clearly separate
resonance and overlap contributions and thus allow the
superposition of both the contributions in an unambigu-
ous way. This SPD approach may constitute an important
step forward towards a unified description of the B → π
form factors at small and large recoil, although we are
aware that there is still a number of open questions to be
answered before a satisfactory and complete description
of the B → π transition form factors has been achieved.

Our paper is organised as follows: In Sect. 2 we present
the basic definitions and the kinematics. In Sect. 3 we in-
troduce the b-u SPDs and discuss contributions to them
from various sources. From the SPDs we calculate the
B → π form factors as functions of the momentum trans-
fer, q2. The results are presented in Sect. 4 together with
a comparison to other results, an assessment of their theo-
retical uncertainties and an evaluation of the semi-leptonic
B → π decay rates. In this section we also check our form
factors against the unitarity bounds derived in [13]. The
summary is presented in Sect. 5.

2 Kinematics

To be specific we consider the semi-leptonic decay B̄0 →
π+`−ν̄l; all our results can straightforwardly be adapted
to other B → π transitions. The form factors for B̄0 → π+

transitions are frequently defined by (see e.g. [4,10,13])

〈π+; p′|ū(0)γµb(0)|B̄0; p〉

= F+(q2)
(

pµ + p′
µ − M2

B − M2
π

q2 qµ

)
+

F0(q2)
M2

B − M2
π

q2 qµ , (1)
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where q = p − p′ and MB (Mπ) is the B (π) mass. The
form factors defined in (1) are subject to the kinematical
constraint F+(0) = F0(0). For our purpose of investigating
the SPDs for B → π transitions it is more convenient to
use the alternative covariant decomposition

〈π+; p′|ū(0)γµb(0)|B̄0; p〉

= F (1)(q2) p′
µ + F (2)(q2)

(
qµ − q2

M2
B

pµ

)
. (2)

The two sets of form factors are related by

F+ =
1
2

(
F (1) − q2

M2
B

F (2)
)

,

F0 =
1
2

(
1 − q2

M2
B − M2

π

)
F (1) +

q2

2M2
B

M2
B + M2

π

M2
B − M2

π

(
1 − q2

M2
B + M2

π

)
F (2) . (3)

At q2 = 0 the form factors F+ and F0 are solely deter-
mined by the form factor F (1). Most convenient for the
calculation of the B → π transition form factors in terms
of SPDs is a frame of reference where the hadron momenta
are collinear to each other; this frame may be viewed
as a generalisation of a Breit frame. We introduce light-
cone coordinates v± = (v0 ± v3)/

√
2 and v⊥ = (v1, v2)

for any four-vector v and use component notation v =
[v+, v−,v⊥]. Defining the so-called skewedness parameter
by

ζ =
q+

p+ = 1 − p′+

p+ , (4)

we can write the B and π momenta in our frame of refer-
ence as

p =
[

p+ ,
M2

B

2p+ , 0⊥

]
,

p′ =
[

(1 − ζ)p+ ,
M2

π

2p+ (1 − ζ)
, 0⊥

]
. (5)

Positivity of the energy of the final state meson implies
ζ < 1. The momentum transfer is given by

q2 = ζM2
B

(
1 − M2

π

M2
B(1 − ζ)

)
. (6)

The skewedness parameter ζ covers the interval [0, 1 −
Mπ/MB ] in parallel with the variation of the momentum
transfer from zero (we neglect the lepton mass here) to
q2
max = (MB − Mπ)2 in the physical region of the B → π

transitions. In contrast to the case of form factors in the
space-like region [14], there is no frame for B → π tran-
sitions in which the skewedness parameter can be chosen
to be zero. In the following we will neglect the pion mass
in the calculation of the SPDs and form factors.

For convenience we quote the light-cone components
of the current matrix element (2) in the frame of refer-
ence (5):

〈π+; p′|ū(0)γ+b(0)|B̄0; p〉 = F (1)(q2) (1 − q2

M2
B

) p+ ,

〈π+; p′|ū(0)γ−b(0)|B̄0; p〉 = F (2)(q2) (1 − q2

M2
B

)
M2

B

2p+ .

(7)

The matrix elements of the transverse currents are zero.

3 b-u skewed parton distributions

We define the b-u SPD F̃ (1)
ζ by the non-forward matrix

element ∫
dz−

2π
eixp+z− 〈π+; p′|ū(0)γ+b(z−)|B̄0; p〉

= (1 − ζ) F̃ (1)
ζ (x, q2) , (8)

where x = k+/p+ is the fraction of plus-components of the
b-quark and B-meson momenta. The second SPD, F̃ (2)

ζ , is
analogously defined with γ+ being replaced by γ−, see also
(7). In the frame of reference chosen by us the momentum
transfer and the skewedness parameter are related to each
other by (6), q2 = ζM2

B . This relation makes the q2 vari-
able in F̃ (i)

ζ redundant. For the ease of notation we will,
therefore, omit it in the following.

Depending on the value of x, the SPDs describe differ-
ent physical situations [12]: For 1 ≥ x ≥ ζ a b quark with
momentum fraction x is taken out of the B meson and
a u quark carrying a momentum fraction x′ = k+′/p+′
(with respect to the final state meson) is inserted back,
turning the B meson into a pion (see Fig. 1a)1. This part
of the SPDs will be modelled as overlaps of B and π light-
cone wave functions. For 0 ≤ x < ζ the B meson emits
a bu pair and the remaining partons form the pion (see
Fig. 1b). According to Brodsky and Hwang [15] this contri-
bution can be described by non-diagonal light-cone wave
function overlaps for n+2 → n parton processes 2. In ad-
dition, as pointed out by Radyushkin [16], Bπ resonances
contribute to the SPDs in that region (see Fig. 1c). These
considerations lead to the following decomposition of the
b-u SPDs in the interval 0 ≤ x ≤ 1

F̃ (i)
ζ (x) = θ(x − ζ) F̃ (i)

ζ ove(x) +

θ(ζ − x)
[
F̃ (i)

ζ ann(x) + F̃ (i)
ζ res(x)

]
, (10)

where the three parts of the SPDs labelled ove, ann and
res refer to the contributions from Fig. 1 a), b) and c),

1 The momenta of the active b and u quarks read in our
frame of reference

k =

[
xp+ ,

m2
b + k2

⊥
2xp+ , k⊥

]
,

k′ =

[
(x − ζ)p+ ,

m2
u + k2

⊥
2(x − ζ)p+ , k⊥

]
. (9)

2 The existence of this contribution has been stressed by
Sawicki [17] some time ago.
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Fig. 1a–c. Overlap a), annihilation b) and resonance c) con-
tributions to B → π transitions. The dots indicate that any
number of spectators may contribute

respectively. The relative importance of the overlap con-
tribution to the SPDs on the one side and the sum of
annihilation and resonance one on the other side, change
with the momentum transfer as a consequence of the re-
lation (6). At large recoil, q2 ' 0, the annihilation and
resonance parts do not contribute while they dominate
at small recoil, q2 ' q2

max. We stress that the superposi-
tion (10) is controlled by the momentum transfer or the
skewedness parameter ζ in an unambiguous way, i.e. there
is no danger of double counting. The b-u SPDs exist in a
third region of the variable x, namely for −1 + ζ ≤ x < 0
where they describe the situation that a b quark with a
negative momentum fraction is emitted from the B meson
and u quark is absorbed. Re-interpreting a quark with a
negative momentum fraction as an antiquark with a pos-
itive fraction, one finds that the region −1 + ζ ≤ x < 0
describes the emission of a b-quark and the absorption of
a u one. This re-interpretation implies the relation

F̃ (i) b−u
ζ (x) = −F̃ (i) b−u

ζ (ζ − x) (11)

for the SPDs (x ≥ ζ). By way of exception we here quote
the quark-flavour labels. Since the probability of finding

a bb sea-quark pair in the B meson is practically zero,
F̃ (i)

ζ (x) ' 0 in the region −1 + ζ ≤ x < 0 to a very high
degree of accuracy.

By comparison of (7) and (8) one finds the reduction
formula

F (i)(q2) =
∫ 1

0
dx F̃ (i)

ζ (x) (12)

for i = 1, 2. The range of the x integration is restricted
to the interval [0, 1] since contributions from b quarks or,
in other words, from negative momentum fractions are
absent in the form factors.

As already mentioned, we describe the overlap part of
the SPDs by light-cone wave functions for the B and the
π mesons. To begin with we consider the valence Fock
states of the B and π mesons. The corresponding light-
cone wave functions, ΨB and Ψπ, respectively, provide the
overlap contribution

F̃ (1)
ζ ove(x)

=
2

1 − ζ

∫
d2k⊥
16π3 Ψ∗

π(x′ =
x − ζ

1 − ζ
,k⊥) ΨB(x,k⊥) ,

(13)

where k⊥ is the intrinsic transverse momentum of the b
(u) quark with respect to the B (π)-meson momentum.
As a consequence of the collinearity of the two meson mo-
menta in our frame of reference the transverse momentum
in the argument of the π wave function is the same as in
the B wave function, while the longitudinal momentum
fraction is shifted.

For the pion valence Fock state wave function we take
a simple Gaussian ansatz

Ψπ(x,k⊥) =
√

6
fπ

exp
[
− 1

8π2f2
π

k⊥2

x (1 − x)

]
(14)

with the associated asymptotic distribution amplitude

φAS
π (x) = 6x(1 − x) . (15)

fπ (=132 MeV) is the usual pion decay constant. The
pion’s transverse size parameter is fixed by the chiral a-
nomaly to (2

√
2πfπ)−1 [18]. The wave function (14) being

normalised to 0.25 at a scale of 1 GeV, has been tested
against experiment and found to work satisfactorily in
many hard exclusive reactions involving pions (cf. [19] for
instance). It is also supported by recent QCD sum rule re-
sults (cf. [20] for instance), by a study of power corrections
[21] and by the instanton model [22].

For the bq wave function of the B meson we use a
slightly modified version of the Bauer–Stech–Wirbel (BSW)
function [4] which has been shown to be useful in weak de-
cays3

ΨB(x,k⊥) =
fB

2
√

6
φB(x) 16π2a2

B exp [−a2
Bk⊥2] , (16)

3 A Gaussian as in (14) for the B meson has theoretical de-
ficiencies in the formal limit MB → ∞ and is, therefore, in
conflict with the heavy quark effective theory [23].
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where the distribution amplitude is given by

φB(x) = N x (1 − x) exp
[
−a2

B M2
B (x − x0)

2
]

. (17)

The distribution amplitude φB exhibits a pronounced peak,
its position is approximately at x ' x0 = mb/MB . For a
b-quark mass, mb, of 4.8 GeV the value of x0 is 0.91. This
property of the B-meson distribution amplitude parallels
the theoretically expected and experimentally confirmed
behaviour of heavy meson fragmentation functions. The
constant N in (17) is fixed by the condition∫ 1

0
φB(x) dx = 1 . (18)

For the B-meson decay constant fB we take a value of
180 MeV which is supported by recent lattice gauge the-
ory analyses [24]. The only remaining free parameter in
the B-meson wave function(16) is the transverse size pa-
rameter, aB , which we fix by normalising the B-meson’s
valence Fock state probability to unity. This leads to a
value of 1.51 GeV−1 for aB if a value of 4.8 GeV is cho-
sen for the b-quark (pole) mass [25]. The parameter Λ̄,
given by the B-meson and b-quark mass difference, ac-
quires a value of 480 MeV. The constant N in (17) then
takes a value of 54.7. The maximum of the distribution
amplitude φB(x) is located at xmax = 0.86. We checked
that our final results only mildly depend on variation of
the parameters mb and fB and of the probability of the
B meson’s valence Fock state.

Performing the trivial k⊥ integration in (13), we find

F̃1
ζ ove(x) = 8π2fBfπ a2

B

φB(x)
1 − ζ

× (x − ζ) (1 − x)
8π2f2

πa2
B (x − ζ) (1 − x) + (1 − ζ)2

. (19)

We see that F̃1
ζ ove(x) ∝ (x − ζ) for x → ζ and ζ fixed. In

the formal limit MB → ∞, this SPD behaves as M
−3/2
B .

Of course, the result (19) can easily be translated to
other choices of the pion and B-meson wave functions.
The numerical results will not change significantly as long
as distribution amplitudes are used which are close to the
asymptotic one in case of the pion and strongly peaked at
large x in case of the B meson.

From the wave functions (14) and (16) one may also
calculate the overlap part of the SPD F̃2

ζ ove in full analogy
to (13). However, due to additional k⊥ factors, arising
from the matrix elements of the γ− current between the
light-cone helicity spinors, F̃2

ζ ove is power-suppressed to
order Λ̄/MB at least as compared to F̃1

ζ ove and, hence,
neglected.

In principle, the overlap parts of the SPDs receive
contributions from all Fock states. The generalisation of
the overlap representation in (13) to higher Fock states
is a straightforward application of the methods outlined
in [14]. Using suitably generalised wave functions for the
higher Fock states (cf. [14]), one can show that the higher

skewed parton distribution F1
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Fig. 2. The SPD F̃ (1)
ζ (x) vs. x and ζ

Fock state contributions to F̃1
ζ ove are very small and can

be neglected. It is not only the tiny probabilities of the
higher B-meson Fock states which is responsible for this
fact. Even more important for the suppression of these
contributions is a conspiracy of the factor (1 − x)n(N) ap-
pearing in the N -particle Fock state contribution to the
SPD F̃1

ζ ove and the strongly peaked shape of the B-meson
wave function. Here, n(N) is a positive integer increasing
with N [14]. Since x0 = 1 − Λ̄/MB one may regard the
contribution of the N -particle Fock state as a power cor-
rection (Λ̄/MB)n(N) to (19). Thus, to a high degree of ac-
curacy, the restriction to the valence contribution suffices
for the overlap part of the b-u SPDs.

In order to estimate the annihilation parts of the SPDs
we can restrict ourselves again to the parton process with
the minimal number of partons participating, namely the
process bduu → du, and we are going to show that this
contribution is negligibly small, too. Numbering the b
quark by 1 and u by 4 and noting that the momentum
q is shared by the b and the u quark, one finds the con-
ditions x4 = ζ − x1 and k⊥4 = −k⊥1 in the frame of
reference defined by (5). In combination with momentum
conservation this leads to the relations x3 = 1 − ζ − x2
and k⊥3 = −k⊥2 for the momentum fractions and trans-
verse momenta of the additional d and u quarks. With
these results in mind one arrives at the following overlap
contribution [15]

F̃1
ζ ann(x) =

2
1 − ζ

∫ 1−ζ

0
dx2

∫
d2k⊥1d2k⊥2

(16π2)3

Ψ∗
π(x′

2 =
x2

1 − ζ
,k⊥2) ΨB,4(xi,k⊥i) , (20)

where Ψπ is the pion valence Fock state wave function (14)
and ΨB,4 the four particle wave function of the B meson.
Generalising the wave function (16), (17) in a straightfor-
ward fashion to the four-particle case, we find

F̃ (1)
ζ ann(x) ∝ (1 − ζ)2(ζ − x) exp

[−a2
BM2

B(x − x0)2
]
,

(21)

i.e. the annihilation contribution to F̃ (1)
ζ is exponentially

damped except for ζ >∼x0 (see (10)) and x ' x0. This
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region, however, is suppressed by the factors (1 − ζ)2 and
ζ − x. Thus, the annihilation contribution is very small
and can safely be neglected. Similar arguments hold for
F̃ (2)

ζ ann.
For the resonance contribution (see Fig. 1c) we concen-

trate on the resonance that is closest to the physical decay
region, i.e. on the B∗− vector meson. From the Lorentz
structure of the BB∗π vertex [9] we infer

F̃ (1)
ζ res(x) =

fB∗ gBB∗π

MB∗

(
M2

B∗ − 1
2
ζM2

B

)

× φB∗(x/ζ)
M2

B∗ − ζ M2
B

,

F̃ (2)
ζ res(x) = −1

2
M2

B

fB∗ gBB∗π

MB∗

φB∗(x/ζ)
M2

B∗ − ζ M2
B

. (22)

The valence Fock state of the B∗− resonance consists of
a b and a u quark with an associated wave function simi-
lar to (16). Since the transverse parton momenta, defined
with respect to the B∗ momentum q, are integrated over,
only the B∗ distribution amplitude, φB∗(y), remains for
which one may, for instance, apply the same ansatz as for
the B meson. Its explicit form is irrelevant for the tran-
sition form factors as we will see below. The argument of
the B∗ distribution amplitude, x/ζ, equals the momen-
tum fraction k+/q+ the b-quark carries w.r.t. the B∗ me-
son. In the numerical analysis to be discussed below we
take fB∗gBB∗π = 20 fB which is compatible with a recent
QCD sum rule analysis [10]. The coupling constant of the
BB∗π vertex is related to a parameter g in an effective La-
grangian in which the chiral and heavy quark symmetries
are built in [9], by gBB∗π = 2MB g/fπ(1+O(ΛQCD/MB)).
From this it follows that for q2 ' q2

max the SPD F̃ (1)
ζ res

scales as fB g MB/Mπ ∝ M
1/2
B . This scaling law is in ac-

cordance with the one for the corresponding B → π form
factors which has been found from the heavy quark limit
of QCD in a model-independent way [8].

Putting all this together we obtain the numerical re-
sults for the b-u SPD F̃ (1)

ζ displayed in Fig. 2. Due to the
characteristic features of the B-meson distribution ampli-
tude, the overlap contribution (19) to F̃1

ζ exhibits a bump
at x ' x0 provided ζ is smaller than x0. That bump be-
comes more pronounced if ζ approaches x0. The resonance
contribution (22) provides the ridge at x ' x0 ζ where the
B∗ distribution amplitude is large. The resonance contri-
bution generates a similar ridge in F̃ (2)

ζ while the overlap
contribution to it is zero in our model.

Comparing the properties of both, the overlap and
the resonance parts of which our SPDs consist, we see
that they are continuous at the border points x = 0 and
x = ζ while their derivatives do not exist there. Hence,
our F̃ (i)

ζ (x) are non-analytic at the border points, a prop-
erty that, according to Radyushkin [16], the SPDs should
possess.

4 B → π form factors

While the form factor decomposition (2) is appropriate
for the investigation of the SPDs, the form factors F+ and
F0 are more suitable in applications to decay processes.
We therefore refrain from discussing the form factors F (i),
i = 1, 2 and present numerical results for F+,0 only. The
overlap contributions to the latter form factors are ob-
tained from (19), (10) and (12) by numerical integration
and insertion of the resulting form factor F (1) into (3).
The resonance contribution can be found along the same
lines. In this case the x integration is trivial since it only
applies to the B∗ distribution amplitude and, as a change
of variables reveals, this integral is just the normalisation
(18). Hence, one obtains for the resonance contribution to
the form factor F+

F+,res(q2) =
1
2

q2

M2
B

fB∗ gBB∗πMB∗

M2
B∗ − q2 . (23)

Note that the standard monopole term (see e.g. [9]) is
modified by the factor q2/M2

B which implies a q2-depend-
ent B∗ coupling to the Bπ system. That factor arises from
our ansatz (22) in combination with (10) and (12). Since
we consider a large range of momentum transfer (with
respect to the meson radii) the appearance of such q2 de-
pendence is not unreasonable. It forces the resonance con-
tribution to vanish at q2 = 0 in concord with the physical
interpretation of the SPDs, see (10). At q2 ' q2

max, on the
other hand, the resonance term (23) is very close to the
standard monopole term.

Analogously, one finds for the resonance contribution
to the form factor F0

F0,res(q2) =
q2

M2
B

(
1 − q2

M2
B

)
fB∗ gB∗Bπ

2 MB∗
. (24)

A pre-factor, arising from the combination of (3) and (22),
cancels the B∗-pole in F0. (We remind the reader of the
fact that F0 refers to a scalar current.)

In addition to the overlap and resonance contributions
the form factors also receive contributions from perturba-
tive QCD where a hard gluon with a virtuality of the order
of M2

B is exchanged between the struck and the specta-
tor quark. In [7] the perturbative contributions have been
evaluated at large recoil within the modified perturba-
tive approach in which the transverse degrees of freedom
are retained and Sudakov suppressions taken into account.
Since in [7] the same soft wave functions with Gaussian
suppressions of large intrinsic transverse quark momenta
have been applied as here (see (14,16)), we can make use
of the results presented in [7] and add them to our form
factor predictions. At small recoil, q2 ≥ 18 GeV2, the pre-
dictions for the perturbative contributions cease to be re-
liable because of the small virtualities some of the internal
off-shell quarks and gluons acquire in this region.

Numerical results for the three contributions, the over-
lap, the resonance and the perturbative one, are plotted
in Fig. 3. In the case of the form factor F+ we observe
the dominance of the overlap contribution at large recoil
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Fig. 3. The form factors F+(q2) (left) and F0(q2) (right) vs. momentum transfer. Our predictions (solid lines) for the form
factors are decomposed into resonance, overlap and perturbative contributions. The lattice QCD data, taken from [26], are
shown for comparison. CT indicates the Callan-Treiman value, see text

while the resonance contribution takes the lead at small
recoil. This feature is expected to hold from the decom-
position (10). The perturbative contribution, taken from
[7], provides only a small correction to F+, of the order
of 10%, at large recoil and can be neglected at q2 ' q2

max
as compared to the large resonance contribution. Actually,
for the numerical analysis the perturbative contribution to
F+ is smoothly continued to zero for q2 ≥ 18 GeV2. The
sum of the three contributions to F+ is in fair agreement
with the lattice QCD results presented in [26].

Due to the absence of the B∗ pole the form factor F0
behaves differently; it is rather flat over the full range of
momentum transfer. The perturbative contribution makes
up a substantial fraction of the total result for F0 at in-
termediate momentum transfer. Since, as we mentioned
above, it becomes unreliable for q2 >∼ 18 GeV2 we are not
in the position to predict F0 at large q2. A calculation
of F0 in that region would also require a detailed investi-
gation of the scalar Bπ resonances of which not much is
known at present. Despite of this drawback our results for
this form factor are also in fair agreement with the lattice
QCD results [26] and, in tendency, seem to extrapolate to
the B-sector analogue of the Callan-Treiman value,

FCT
0 (q2 = q2

max) =
fB

fπ
+ O(M2

π/M2
B) , (25)

which is provided by current algebra in the soft-pion limit
[9].

In Fig. 4 we compare our results to a few other pre-
dictions of the B → π form factor F+. We first mention
the work by Bauer, Stech and Wirbel [4] in which the
form factor has been calculated from a light-cone wave
function overlap at q2 = 0 and the result is used as a
normalisation of a pole term. The BSW model has been
applied to exclusive D- and B-meson decays and works in

many cases quite well phenomenologically. Bauer, Stech
and Wirbel employ a parameterisation of the pion wave
function which resembles that of their B wave function
(see (16), (17)) and, in contrast to us, normalise the pion
wave function to unity. Doing so they find a larger over-
lap and, hence, a larger form factor as we do, see Fig. 4.
At intermediate momentum transfer, on the other hand,
our predictions for F+ exceed the BSW result as a con-
sequence of the superposition of resonance and overlap
contribution.

Khodjamirian and Rückl [10] employed QCD light-
cone sum rules for the calculation of the B → π form
factors. In this approach the soft matrix elements are ex-
pressed as a series of collinear terms arising from operators
of increasing twist; actually operators are used up to twist
4. The soft contributions are supplemented by αs correc-
tions to the twist-2 contribution and, at large momentum
transfer where the QCD sum rules become unstable, by
the B∗ resonance matched to the sum of the other con-
tributions at q2 ' 16 GeV2. As Fig. 4 reveals there are
similar deviations between our predictions and those pre-
sented in [10] although to a lesser extend as in the case of
the BSW model. A QCD sum rule analysis of the B → π
form factors has also been attempted by Ball [11]. Al-
though the results for F+ presented in [10] and [11] agree
fairly well with each other in general, differences in details
are to be noticed.

Of particular interest is the value of the form factor
F+ at zero momentum transfer. It plays an important
role in the rates of the semi-leptonic B-meson decays and
also in exclusive B-decays into ππ or other pairs of light
pseudoscalar mesons. The widths for the latter processes
are calculated on the basis of a (weak interaction) fac-
torisation hypothesis with eventual QCD corrections. The
factorising contribution to the decay amplitude is propor-
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tional to the B → π form factor F0 at q2 ' 0. From recent
investigations of exclusive non-leptonic B-decays [27] we
learned that a value of F0(0) = F+(0) in the range of
0.30-0.33 is needed in order to account for the experimen-
tal decay widths [28] within the factorization approach.
Such a large value cannot easily be accommodated by the
models. With the exception of the BSW model [4] where
a value of 0.33 for F+(0) has been obtained, most of the
other approaches, e.g. [5,10,11], provide values within the
range of 0.2-0.3 which are often subject to substantial un-
certainties so that there is no obvious conflict with the
present theoretical understanding of non-leptonic B de-
cays.4

We predict a value of 0.22 for F+(0) of which an amount
of 0.03 originates from the perturbative contribution. For
an assessment of the theoretical uncertainties of our re-
sults we have to consider the following items:
i) The overlap contribution is subject to Sudakov sup-
pressions of the end-point region, x → 1. Since the wave
functions we are using, (14), (16) and (17), already sup-
press that region substantially (as compared, for instance,
to the ones used in [5]) we do not expect the inclusion
of the Sudakov factor to lead to dramatic effects. More-
over, the Sudakov suppressions are compensated to some
extend by O(α2

s) corrections to the perturbative contribu-
tions [5]. Thus, we estimate that the net effect of Sudakov
suppression and O(α2

s) corrections does not exceed 10%
of the overlap contribution to the form factor F+.
ii) In the QCD sum rule approach [10,11] a not unimpor-
tant contribution to the form factors comes from a two-
particle twist-3 distribution amplitude. That distribution
amplitude is constrained by the vacuum-pion matrix ele-
ment of the pseudoscalar current being related to the di-
vergence of the corresponding axial-vector current matrix
element and known to acquire the large value fπM2

π/(mu+
md) where the mq represent current quark masses. The
implementation of this constraint into the light-cone wave
function approach is somewhat ambiguous, and we there-
fore refrain from it in this article. It requires the intro-
duction of a pion valence wave function component where
quark and antiquark are in opposite helicity states. Such
a component has been discussed in connection with the
Melosh transform, see e.g. [30]. By examining several plau-
sible parameterisations of this wave function component
we find that its numerical impact on the overlap is around
10%.
iii) One may consider deviations of the pion distribution
amplitude from the asymptotic form (15). Markedly broad-
er distribution amplitudes, used for instance in recent QCD
sum rule analyses [10,11], clearly enhance the overlap with
the B-meson wave function. On the other hand, they are
in conflict with the πγ transition form factor and the par-
ton distributions of the pion [19]. In order to examine the
bearing of the form of the pion distribution amplitude on

4 In this context we want to refer to a recent paper [29] in
which the existence of rather large non-factorising QCD correc-
tions is claimed. In this case a somewhat smaller value of F+(0)
than 0.30 − 0.33 may suffice to accomodate the experimental
decay width for B → ππ.
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Fig. 4. Comparison of various predictions for the form factor
F+. The solid line represents our result, the dashed one the
QCD sum rule result of [10] and the dash-dotted one the BSW
result [4]. The lattice QCD data are taken from [26]

the size of the overlap contribution we allow for a value
of ±0.1 for the second coefficient, B2, in the Gegenbauer
expansion of that distribution amplitude. Such a value of
B2, being still tolerated by the πγ transition form factor
within the light-cone wave function approach, leads to a
change of ±0.03 for F+(0).
iv) The uncertainty of the resonance contribution is pro-
portional to that of the product of coupling constant and
the B∗ decay constant which is about 20%.
Combining these uncertainties with those arising from the
input parameters in our approach (fB , mb) and the ne-
glected order Λ̄/MB corrections, we estimate the total un-
certainty of our results for the B → π transition form
factors to be about 20-25%.

Mannel and Postler derived model-independent bounds
for the B → π transition form factors from analyticity
and unitarity [13]. Inclusion of the values of the form fac-
tors and their derivatives at minimum and/or maximum
momentum tighten the bounds considerably which then
become a stringent test of the internal consistency of a
model and its compatibility with QCD. We submit our
form factor F+ to this examination and take its values at
q2 = 0 and q2 = q2

max as well as its first two derivatives
at q2 = 0 as input. The result is plotted in Fig. 5a) and
b). We observe that our prediction for F+ lies comfortably
within the bounds.

One may also consider bounds for given slope and cur-
vature of F+ at q2 = q2

max. However, in contrast to the
value of F+(q2

max) itself which is dominated by the B∗ pole,
the higher derivatives of F+ at small recoil may be sensi-
tive to corrections from additional resonances, the treat-
ment of perturbative corrections in that region etc. Never-
theless, for the sake of completeness, we plot the unitarity
bounds with given F ′

+(q2
max) and F ′′

+(q2
max) in Fig. 5c) and
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Fig. 5a–d. Testing unitarity. Solid lines: unitarity bounds [13]; dashed lines: our results for F+. a) The value, slope and
curvature of F+ at q2 = 0 are given; b) value and slope at q2 = 0, value at q2

max; c) value, slope and curvature at q2
max; d) value

at q2 = 0, value and slope at q2
max

d). A mild violation of the bounds is observed. In view
of the systematic and parametric uncertainties discussed
above this is not to be considered as an inconsistency of
our approach.

Let us now turn to the discussion of the semi-leptonic
decay rates B̄0 → π+`−ν̄`. The differential decay rate is
given by

dΓ

dq2 =
G2|Vub|2

24π3

(q2 − m2
l )

2
√

E2
π − M2

π

q4M2
B

×
{

(1 +
m2

l

2q2 ) M2
B(E2

π − M2
π) |F+(q2)|2

+
3m2

l

8q2 (M2
B − M2

π)2 |F0(q2)|2
}

, (26)

where Eπ = (M2
B + M2

π − q2)/(2MB) is the pion energy
in the B-meson rest frame. It is important to realize that

for light leptons the scalar form factor F0 plays a negli-
gible role in the decay rate since its contribution appears
with the square of the lepton mass, ml. Therefore, the dif-
ferential decay rates for the light-lepton modes determine
|VubF+(q2)|. On the other hand, the heavy-lepton decay
mode B̄0 → π+τ ν̄τ offers the possibility of exploring the
scalar form factor.

Our predictions for the semi-leptonic decay rates into
light or τ leptons are shown in Fig. 6. For the scalar form
factor F0, which becomes important in the τ mode, we use
her a simple, smooth interpolation between the CT value
at q2 = q2

max and our results for F0 below q2 = 18 GeV2.
For the branching ratio of the light-lepton modes we find

BR[B̄0 → π+eν̄e] ' BR[B̄0 → π+µν̄µ]

= 1.9 · 10−4 ·
( |Vub|

0.0035

)2

.
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Fig. 6. Predictions for the semi-leptonic differential decay
widths, divided by |Vub|2 and the total B̄0-meson width, Γtot,
vs. momentum transfer. Solid line: B̄0 → π+eν̄e; dashed line:
B̄0 → π+τ ν̄τ

The theoretical uncertainty of this prediction, dominated
by that of the overlap contribution, amounts to about
30%. Our result is to be compared with the CLEO mea-
surement [1]: (1.8±0.4±0.3±0.2) ·10−4 where the quoted
errors refer to the statistical and systematical uncertain-
ties and to the model dependence of the CLEO analysis,
respectively.

For the τ channel we obtain

BR[B̄0 → π+τ ν̄τ ] = 1.5 · 10−4 ·
( |Vub|

0.0035

)2

.

The estimated theoretical error amounts to about 30%.
The ratio of both the branching ratios, in which the CKM
matrix element cancels, amounts to 0.78 with an uncer-
tainty of 15%.

5 Conclusions

We investigated the b-u SPDs within a light-cone wave
function approach. Besides the usual overlap of the B and
π valence Fock state wave functions we also considered
higher Fock states as well as annihilation contributions
from non-diagonal overlaps and showed that these contri-
butions provide only small, negligible corrections to the
leading valence term. The B∗ resonance is an important
and, at small recoil, dominant contribution and has to
be taken into account for a complete description of the
transition form factors. The chief advantage of the SPD
approach is that the skewedness parameter clearly sep-
arates the overlap from the resonance contribution and
both the contributions can be added in an unambiguous
way. From the b-u SPDs we calculated the B → π transi-
tion form factors by means of reduction formulas. Taking

into account the corrections from perturbative physics [7],
we obtain a reliable predication of F+ for the entire range
of momentum transfer and for F0 up to about 18 GeV2.
In particular, we obtain a value of 0.22±0.05 for the form
factors at maximum recoil. This value appears to be some-
what small if contrasted to the value required in B → ππ
decays (if the latter process is analysed on the basis of
the factorisation hypothesis) but it is within the range of
other theoretical predictions of F+(0) [4,5,10,11]. Gener-
ally, our results for the form factors are in fair agreement
with the QCD sum rule result of Khodjamirian and Rückl
[10] which is, in spirit, very close to the light-cone wave
function approach. Our results are in agreement with lat-
tice QCD data [26] and respect the unitarity bounds de-
rived in [13], leaving aside mild violations for cases where
the derivatives of F+ at q2 = q2

max are used as input.
Using our form factors we calculated the differential

and total decay rates for semi-leptonic B → π decays. Our
predictions for the total decay for the process B̄0 → π+eν̄e

is in good agreement with the recent CLEO measurement
[1] if a value of 0.0035 is used for the CKM matrix ele-
ment |Vub|. We stress that the knowledge of F+(0) is not
sufficient for a prediction of the total decay rates since the
q2 dependence of the form factors is model-dependent.

We finally note that our approach can straightforwardly
be applied to other heavy-to-light meson transition form
factors. At small recoil the heavy quark symmetries [9]
may turn out helpful in fixing parameters.
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